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Abstract

This paper develops and applies tools to assess multivariate aspects of Bayesian

Dynamic Stochastic General Equilibrium (DSGE) model forecasts and their ability to

predict comovements among key macroeconomic variables. We construct posterior pre-

dictive checks to evaluate conditional and unconditional density forecasts, in addition

to checks for root-mean-squared errors and event probabilities associated with these

forecasts. The checks are implemented on a three-equation DSGE model as well as the

Smets and Wouters (2007) model using real-time data. We find that the additional

features incorporated into the Smets-Wouters model do not lead to a uniform im-

provement in the quality of density forecasts and prediction of comovements of output,

inflation, and interest rates.

JEL CLASSIFICATION: C11, C32, C53, E27, E47

KEY WORDS: Bayesian Methods, DSGE Models, Forecast Evaluation, Macroeconomic
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models use modern macroeconomic theory

to explain and predict comovements of aggregate time series over the business cycle. They

also allow researchers to conduct policy experiments in which agents’ decision rules are re-

derived under the counterfactual policies. These two features make DSGE models attractive

to central banks for forecasting and policy analysis. In turn, a literature on the assessment of

DSGE model forecasts has developed. The favorable reading of this literature, in particular

Smets and Wouters (2007), is that DSGE model forecasts for U.S. data in terms of RMSEs

are competitive with forecast generated by certain types of Bayesian vector autoregressions

(VARs) or published by professional forecasters. A more skeptical reading suggests that

the DSGE model forecasts, specifically forecasts of nominal variables such as inflation and

interest rates, can be dominated in terms of RMSE by more sophisticated semi-structural

time series models, such as VARs with priors that shrink toward DSGE model restrictions as

in Del Negro, Schorfheide, Smets, and Wouters (2007) or the best among the atheoretical time

series models considered in the study by Faust and Wright (2009). Edge and Gürkaynak

(2010), henceforth EG, find that their medium-scale DSGE model predicts inflation and

output growth with similar accuracy as the alternative statistical models and professional

forecasts considered in their paper. However, EG note that the forecasts are fairly poor in

an absolute sense: RMSEs are very close to the sample standard deviations of the series that

are being forecast.

As of now, the literature on DSGE model forecasting has focused on point forecasts,

predominantly evaluated based on root-mean-squared error (RMSE) measures. The goal of

this paper is to extend the scope of the evaluation of DSGE model forecasts beyond RMSE

comparisons. As emphasized by EG, RMSE comparisons are not particularly informative

if the predictability of a time series is low. Moreover, the quadratic prediction error loss

function underlying RMSE comparisons may not be the relevant loss for policy makers. In

fact, central banks increasingly pay attention to density forecasts to assess the probabil-

ity of particular events, such as inflation and output growth being above or below target,

and to judge the uncertainty about future economic developments more generally. Finally,
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RMSEs do not reflect the DSGE models’ alleged strength, namely their ability to forecast

comovements between key macroeconomic variables.

This paper makes three distinct contributions. First, since DSGE models are predom-

inantly estimated with Bayesian methods, we develop so-called predictive checks to assess

whether the probability forecasts of a DSGE model are adequate in certain dimensions. Un-

like in most of the existing literature, our goal is not to compare the accuracy of forecasts

across different model specifications. Our checks document to what extent the predicted

probabilities of events are consistent with their observed frequencies, which is a minimal de-

sirable property for probability forecasts. Bayarri and Berger (2004) refer to the notion that

in repeated practical use of a sequential forecasting procedure the long-run average level of

accuracy should be consistent with the long-run average reported accuracy as the frequentist

principle. In the terminology of Dawid (1982), sequences of (subjective) density forecasts

that adhere to the frequentist principle are well calibrated.1 In particular, we are evaluat-

ing whether the actual pseudo-out-of-sample forecast performance of a particular model is

consistent with the performance that is expected under the predictive distribution of future

observations implied by the estimated DSGE model.

Second, using the framework of predictive checks, we develop novel statistics to assess

a DSGE model’s ability to forecast comovements among macroeconomic variables. Sup-

pose the DSGE model generates a density forecast for output and interest rates. Based

on nonparametric approximations of conditional predictive distributions one can construct

conditional point forecasts, for example, of output given interest rates. If the joint predic-

tive distribution implies a strong correlation between output and interest rates, then in a

pseudo-out-of-sample forecasting experiment the point forecast that conditions on the real-

ized value of the future interest rate should attain a lower RMSE than the unconditional

forecast. Our proposed predictive checks examine how likely the actual RMSE reduction

is under the predictive distribution implied by the DSGE model. In addition to RMSE ra-

tios, we also consider statistics that measure the uniformity of the distribution of so-called

probability integral transformations (PITs, which can be viewed as generalized residuals)

1The notion of calibration used throughout this paper is not to be confused with the notion of a calibrated

DSGE model as in Kydland and Prescott (1982).
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constructed from conditional and unconditional density forecasts. We refer to DSGE model

density forecasts that pass our various predictive checks as well calibrated.

Third, the predictive checks are applied to a simple three-equation New Keynesian model

and the more elaborate DSGE model developed by Smets and Wouters (2007). Given the

relevance of the exercise to the policy making process, we use a real-time data set constructed

in EG and extended in Del Negro and Schorfheide (2012) to ensure that the information set

upon which the forecasts are based matches the one that was available to policymakers. We

find that the additional internal and external propagation mechanisms incorporated into the

SW model do not lead to a uniform improvement in the quality of the density forecasts and

in the prediction of comovements compared with the small three-equation DSGE model. For

instance, the predictive distributions of the SW model exhibit correlations between interest

and inflation rates ranging from 0.5 to 0.6, which implies that knowing future interest rates

can substantially improve the precision of inflation forecasts, and vice versa. However, the

actual RMSE ratio of the unconditional inflation forecast versus an inflation forecast that

conditions on future interest rate realizations is much greater than one, indicating that the

SW model does not correctly capture the comovements between inflation and interest rates.

The small-scale model, on the other hand, suggests that inflation and interest rates are

nearly uncorrelated over the short and medium-run. In turn, unconditional and conditional

inflation forecasts are very similar, and both realized and predicted RMSE ratios are close

to one.

With respect to the comovement of output and inflation, the picture is reversed. The

estimated small-scale DSGE model generates a predictive distribution with a correlation of

-0.5, implying that knowing future inflation can lead to a substantial reduction in the forecast

error of output. However, it turns out that the actual RMSE of the conditional forecast is

larger than the RMSE of the unconditional forecast. The SW model, on the other hand,

implies that there is very little exploitable correlation between output and inflation as well

as output and interest rates, which turns out to be consistent with an actual RMSE ratio

that is close to one. In terms of predicting whether average output and inflation will lie

above or below their long-run target values, both the small-scale model and the SW model
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deliver event probability predictions that are commensurable with actual frequencies.

We also examine the marginal predictive distributions of the two DSGE models and ob-

tain the following key results. First, the interest rate forecasts of both models are poorly

calibrated. Second, for the SW model, the density forecasts of output are too diffuse and

the distribution of output growth PITs is skewed. One possible reason for the latter defi-

ciency is the counterfactual common trend restriction that the SW model imposes on output,

consumption, and investment.

Our work is related to several branches of the forecasting literature. RMSEs for DSGE

model forecasts of U.S. aggregate time series are reported, for instance, in Del Negro,

Schorfheide, Smets, and Wouters (2007), Smets and Wouters (2007), Edge, Kiley, and

Laforte (2009), Schorfheide, Sill, and Kryshko (2010), Wolters (2010), EG, and Del Ne-

gro and Schorfheide (2012). The studies differ with respect to the forecast period as well

as the treatment of data revisions. RMSEs for one-step-ahead forecasts of output growth,

measured in quarter-over-quarter (QoQ) percentage changes, range from 0.45 to 0.65. RM-

SEs for quarterly inflation rates are quite similar across studies and range from 0.21 to 0.29.

Both output growth and inflation forecasts are similar in magnitude to the sample standard

deviations of these series over the respective forecast periods. Finally, RMSEs for quarterly

interest rates range from 0.1 to 0.2 and are substantially lower than the sample standard

deviations because the forecasts are able to exploit the high persistence of the interest rate

series. Results for the Euro area can be found, for instance, in Adolfson, Lindé, and Villani

(2007) and Christoffel, Coenen, and Warne (2010).

The use of PITs to evaluate probability density forecasts has been popularized by Diebold,

Gunther, and Tay (1998), building on earlier work by Rosenblatt (1952) and Dawid (1984).

With the exception of concurrent research by Wolters (2010), none of the earlier papers

examined the calibration of the DSGE model density forecasts by assessing the uniformity

of PITs. While PITs based on predictive densities that are conditioned on future realizations

of a subset of variables arise naturally in a multivariate density forecast evaluation setting

(see Diebold, Hahn, and Tay (1999)), they have not yet been applied to assess a DSGE

model’s ability to forecast comovements. Ratios of RMSEs of unconditional forecasts versus
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forecasts that are conditioned on the future realization of a subset of variables have first

been reported in Schorfheide, Sill, and Kryshko (2010), but that paper does not provide a

formal benchmark, such as percentiles of predictive distributions, against which the ratios

could be evaluated. Finally, none of the existing papers have set up the forecast evaluation

formally as a predictive check in a Bayesian framework.

The remainder of the paper is organized as follows. The proposed predictive checks are

developed in Section 2. The two DSGE models considered in this paper are summarized

in Section 3. The empirical results are presented in Section 4 and Section 5 concludes. An

Online Appendix2 contains the log-linearized equilibrium conditions of the SW model and

a description of how we use Kernel methods to compute moments and PITs for conditional

predictive densities, as well as additional robustness checks for our empirical analysis.

2 Econometric Approach: Predictive Checks

Geweke and Whiteman (2006) emphasize that Bayesian approaches to forecast evaluation

are fundamentally different from non-Bayesian approaches. In a Bayesian framework, there

is no uncertainty about the predictive density given the specified collection of models. This

is in contrast to non-Bayesian approaches (see Corradi and Swanson (2006) for a survey),

in which predictive densities are approximations of “true” densities embodied in the data

generating process. The forecast evaluation in this paper is based on Bayesian predictive

checks. A general discussion of the role in predictive checks in Bayesian analysis can be

found in Lancaster (2004), Geweke (2005), and Geweke (2007) and more specific discussions

of the use of predictive checks for the evaluation of DSGE models are provided in An and

Schorfheide (2007) and Del Negro and Schorfheide (2011).

Throughout the paper sequences xt1 , . . . , xt2 are abbreviated by Xt1:t2 . Let Y ∗1:P be a

hypothetical sample of length P . The predictive distribution for Y ∗1:P based on the time t

information set Ft is

p(Y ∗1:P |Ft) =

∫
p(Y ∗1:P |θ)p(θ|Ft)dθ. (1)

2Available at http://www.econ.upenn.edu/∼schorf/.
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Predictive checks can be implemented based on either the prior or the posterior distribution

of the DSGE model parameters θ. Accordingly, the information set Ft could represent prior

information, say F0, or posterior information, say FR. Let S(Y ∗1:P ) denote a transformation

of the trajectory Y ∗1:P . A simple example of such a transformation would be a sample mean

or standard deviation. Through a change of variables (1) leads to a predictive distribution

for S(Y ∗1:P ), denoted by p(S(Y ∗1:P )|Ft). A predictive check amounts to applying the trans-

formation S(·) to the actual data Y1:P and assessing how far S(Y1:P ) lies in the tails of the

corresponding predictive distribution p(S(Y ∗1:P )|Ft). If S(Y1:P ) is located far in the tails, one

concludes that the model has difficulties explaining the observed pattern in the data.

The novelty in this paper is the particular choice of a class of sample statistics S(·) and

the information set Ft, both of which are tailored toward the assessment of a DSGE model’s

forecast performance. The actual sample is partitioned into Y1:R and YR+1:T and we define

P = T − R. We use Y1:R to define the information set Ft in (1) and replace Y ∗1:P by Y ∗R+1:T

to obtain

p(Y ∗R+1:T |Y1:R) =

∫
p(Y ∗R+1:T |Y1:R, θ)p(θ|Y1:R)dθ. (2)

The sample statistics considered in this paper, generically denoted by S(Y ∗R+1:T ) or S(YR+1:T ),

provide measures of the recursive forecasting performance of the DSGE model.3 We are

comparing the recursive forecasting performance of the DSGE model attained for the ac-

tual sample (Y1:R, YR+1:T ) to the performance in partially simulated samples (Y1:R, Y
∗
R+1:T ).

Since it is not feasible to obtain analytical results for p(S(Y ∗R+1:T )|Y1:R), we now describe a

numerical algorithm to simulate the distribution of S(Y ∗R+1:T ) and implement the predictive

checks.

Algorithm 1.

1. Generate N draws from the predictive distribution p(S(Y ∗R+1:T )|Y1:R) as follows:

(a) Generate parameter draws θ(j), j = 1, . . . , N , from the posterior density p(θ|Y1:R).

3Strictly speaking our statistics S(·) also depend on Y1:R, but we decided to omit the term in the argument

of S(·) to simplify the notation.
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(b) For each parameter draw generate a hypothetical trajectory of observations Y
∗(j)
R+1:T

from p(Y ∗R+1:T |Y1:R, θ(j)) by simulating data from the DSGE model, conditional

on the observed sample Y1:R and the parameter vector θ(j).

(c) For each trajectory of observations Y
∗(j)
R+1:T generate a sequence of recursive fore-

casts. For t = R, . . . , T − 1:

i. Create the synthetic sample (Y1:R, Y
∗(j)
R+1:t) with the understanding that Y

∗(j)
R+1:R =

∅.

ii. Generate draws θ(l), l = 1, . . . , L, from the posterior p(θ|Y1:R, Y ∗(j)R+1:t).

iii. For each draw θ(l) simulate M future trajectories of length H from the DSGE

model. Thus, for l = 1, . . . , L and m = 1, . . . ,M generate sequences Y
(l,m)
t+1:t+H

from the predictive distribution p(Yt+1:t+H |θ(l), Y1:R, Y ∗(j)R+1:t).

iv. Use the draws y
(l,m)
t+h , l = 1, . . . , L and m = 1, . . . ,M , to obtain point and

density forecasts of y
∗(j)
t+h , h = 1, . . . , H.

(d) Compute forecast evaluation statistics (see Sections 2.1 and 2.2) for the sequence

of recursive forecasts of y∗t+h, t = R, . . . , T − h. Denote these forecast evaluation

statistics by S(Y
∗(j)
R+1:T ).

2. Replace Y ∗R+1:T by the actual value YR+1:T and follow Steps 1(c) and 1(d) to obtain

S(YR+1:T ).

3. Based on the draws S(Y
∗(j)
R+1:T ), j = 1, . . . , N , construct a non-parametric approxima-

tion of p(S(Y ∗R+1:T )|Y1:R) and document how far the actual value S(YR+1:T ) lies in the

tail of its predictive distribution.

In the remainder of this section we describe the forecast evaluation statistics that we are

using to assess marginal (Section 2.1) and conditional (Section 2.2) predictive distributions

in more detail.
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2.1 Evaluation of Marginal Density Forecasts

Before assessing the ability of the DSGE model to forecast comovements, we consider two

evaluation statistics that assess univariate aspects of DSGE model density forecasts, namely

RMSEs and PITs. As discussed in Section 1, RMSEs have been used widely in the DSGE

model literature to compare forecasts across competing time series models. However, our

focus is different. We will examine whether the magnitude of realized RMSEs computed

from recursive pseudo-out-of-sample forecasts is commensurate with the RMSEs that we

would expect to observe under the predictive distribution p(Y ∗R+1:T |Y1:R). To our knowledge,

concurrent research by Wolters (2010) is the only one that uses PITs to assess univariate

density forecasts from DSGE models. In this regard, the key contribution of our work is to

use predictive checks to assess formally whether the PITs computed from the pseudo-out-of-

sample forecasts are consistent with the model predictions.

Let yi,t, i = 1, . . . , n denote the elements of the vector time series yt. In practical

forecasting applications, it is more natural and useful to consider averages over the forecasting

horizon instead of simply the value at the h’th step. Thus, instead of forecasts of a growth

rate, say of output, between period t+ h− 1 and t+ h, we consider forecasts of the average

growth rate between period t and period t + h defined as ȳi,t+1:t+h = (1/h)
∑h

s=1 yi,t+s. In

turn hȳi,t+1:t+h captures the total change between the forecast origin and period t + h. In

order to economize on notation, we proceed by writing yi,t+1:t+h instead of ȳi,t+1:t+h.

RMSEs. The RMSE associated with the h-step-ahead forecast of yi,t+h is defined as

RMSE(i|h) =
1

P − h

√√√√R+P−h∑
t=R

(yi,t+h − ŷi,t+h|t)2. (3)

The forecast ŷi,t+h|t is constructed as the mean of the distribution p(yt+h|Y1:R, YR+1:t), ob-

tained in Step 2 of Algorithm 1. To approximate the predictive density for the RMSE, yi,t+h

and ŷi,t+h|t are replaced by y
∗(j)
i,t+h and ŷ

∗(j)
i,t+h|t obtained in Step 1 of Algorithm 1, which leads

to draws RMSE(j)(i|h), j = 1, . . . , N .

PITs Based on Univariate Density Forecasts. Define the probability integral transfor-
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mation for the actual h-step ahead forecast of yi,t+h based on time t information as

zi,h,t =

∫ yi,t+h

−∞
p(ỹi,t+h|Y1:R, YR+1:t)dỹi,t+h. (4)

If yi,t+h and YR+1:t are replaced by the simulated values y∗i,t+h and Y ∗R+1:t, the resulting

sequence Z∗i,h,R:T−h = {z∗i,h,R, . . . , z∗i,h,T−h} is a draw from the model-implied predictive dis-

tribution of the probability integral transforms.

Starting with Dawid (1984) and Kling and Bessler (1989) the use of PITs has a fairly

long tradition in the literature on density forecast evaluation. PITs, sometimes known as

generalized residuals, are relatively easy to compute and facilitate comparisons among ele-

ments of a sequence of predictive distributions, each of which is distinct in that it conditions

on the information available at the time of the prediction. It is shown in Rosenblatt (1952)

and Diebold, Gunther, and Tay (1998) that for h = 1 the z∗i,t,h’s are independent across time

and uniformly distributed: z∗i,t,h ∼ iidU [0, 1]. The uniformity result relies on the following

argument. If a random variable X has an invertible cumulative density function F (x), then

PF{F (X) ≤ z} = PF{X ≤ F−1(z)} = F
(
F−1(z)

)
= z.

The basic argument also works if F (x) is conditioned on a specific information set and

obtained from a parametric Bayes model.4

The uniformity property can be exploited in a predictive check. For instance, suppose

one divides the unit interval into J sub-intervals. According to the predictive distribution,

the expected fraction of PITs in each sub-interval is equal to 1/J . Paraphrasing Bayarri and

Berger’s (2004) frequentist principle, the fraction of actual PITs in each sub-interval should

be close to the fraction expected under the predictive distribution. The closeness can be

assessed with a χ2 goodness-of-fit statistic of the form

Sχ2(Zi,h,R:T−h) =
J∑
j=1

(nj − (P − h+ 1)/J)2

(P − h+ 1)/J
, (5)

4Gneiting, Balabdaoui, and Raftery (2007) illustrate that uniformly distributed PITs do not imply that

conditional mean forecasts are unbiased or that the predictive density is sharp. Thus, if a DSGE model

passes our PIT-based predictive checks, it cannot be concluded that there do not exist other econometric

models that provide more accurate forecasts.



10

where nj is the number of PITs in the bin [(j−1)/J, j/J ]. This statistic measures the devia-

tion from a uniform histogram. A value of zero means a perfect fit. Values of Sχ2(Zi,h,R:T−h)

that lie far in the right tail of p(Sχ2(Z∗i,h,R:T−h)|Y1:R) indicate that the density forecast of

the DSGE model is poorly calibrated. For forecast horizons h > 1 the marginal distribution

of z∗i,t,h remains uniform, but the PITs are no longer independent across time periods. An

attractive feature of our simulation-based approach is that it automatically captures this de-

pendence in the predictive distribution for the fraction of PITs falling into the J subintervals

as well as for the Sχ2(·) statistic.

2.2 Evaluating Forecasts of Comovements

The main focus of our paper is the evaluation of DSGE models’ forecasts of comovements.

Multivariate density forecasts contain information about the correlation between aggregate

output, inflation, interest rates, and other macroeconomic variables that appear in the DSGE

model. In order to evaluate this information we consider statistics that capture the essence of

the following thought experiment. Suppose a DSGE model generates a joint density forecast

for output and interest rates. Moreover, suppose the forecaster knew the future interest

rate. In this case the forecaster could replace the marginal predictive density of output

by a conditional predictive density. Based on the conditional density one can construct a

conditional mean forecast as well as a probability integral transform. If the DSGE model

generates an accurate prediction of comovements, the actual reduction of the RMSE achieved

by conditioning should be commensurable with the reduction predicted by the DSGE model.

Moreover, the PITs should remain uniformly distributed. In addition, we compare the

frequency of discrete events, such as output growth and inflation being above their steady

state level, to their predicted probabilities.

Draws from the conditional predictive distribution of yi,t+h given yj,t+h = yactj,t+h are ob-

tained by re-weighting draws from the bivariate distribution of predictive distribution of

(yi,t+h, yj,t+h) with a Gaussian kernel. Details are provided in the Online Appendix. As dis-

cussed above, our multi-step forecasts refer to h-period averages ȳi,t+1:t+h = (1/h)
∑h

s=1 yi,t+s.
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Accordingly, we also consider averages of the conditioning variable, circumventing a curse-

of-dimensionality problem when computing conditional forecasts for large h with our Kernel

method. For instance, the PIT for output conditional on interest rates at the four-period

horizon, reflects the forecast of the average growth rate conditional on a specific average in-

terest rate over one year, rather than a forecast conditional on four distinct quarterly interest

rate values. Since

p(yi,t+h|yactj,t+h, Y1:R, YR+1:t) =

∫
p(yi,t+h|θ, yactj,t+h, Y1:R, YR+1:t)p(θ|yactj,t+h, Y1:R, YR+1:t)dθ,

we are implicitly following Waggoner and Zha (1999) and revising beliefs about the DSGE

model parameters in view of the conditioning information. However, the revised posterior

p(θ|yactj,t+h, Y1:R, YR+1:t) is never explicitly evaluated. Thus, our approach avoids a costly re-

estimation of the DSGE model.

RMSE Ratios. We use RMSEs and ratios of conditional and unconditional RMSEs as in

Schorfheide, Sill, and Kryshko (2010) to form a predictive check. Let ŷi,t+h|j,t and ŷi,t+h|t

denote the means of the conditional (given yj,t+h) and marginal predictive distribution of

yi,t+h. The RMSE ratio is defined as

R(i|j, h) =

√√√√ 1
P−h

∑R+P−h
t=R (yi,t+h − ŷi,t+h|j,t)2

1
P−h

∑R+P−h
t=R (yi,t+h − ŷi,t+h|t)2

. (6)

If the forecast errors are homoskedastic and normally distributed, then the RMSE ratio is one

whenever the forecast errors are uncorrelated and less than one whenever the forecast errors

are correlated. Suppose that the predictive distribution exhibits no correlation between

yi,t+h and yj,t+h. In this case the unconditional forecast equals the conditional forecast and

both the actual RMSE ratio as well as the RMSE ratio under the DSGE model’s predictive

distribution will be one. Thus, there is no gain from a multivariate as opposed to univariate

modeling approach. If the predictive distribution implies a non-zero correlation, yet this

correlation is inconsistent with the comovements in the actual data, then the predictive

check will reveal a discrepancy between the realized value of R(i|j, h) and its model implied

distribution.

PITs Based on Conditional Density Forecasts. PITs based on conditional predictive
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distributions of yi,t+h given yj,t+h = yactj,t+h are defined as

zi|j,h,t =

∫ yi,t+h

−∞
p(ỹi,t+h|yactj,t+h, Y1:R, YR+1:t)dỹi,t+h (7)

and have first been used by Diebold, Hahn, and Tay (1999) to extend PIT-based density

forecast evaluations to multivariate models. As in the case of unconditional univariate density

forecasts, the marginal distribution of PITs based on conditional density forecasts is uniform

and a predictive check can be based on the discrepancy between the empirical distribution

of PITs and a uniform distribution.

Event Forecasts. Finally, we consider probability forecasts for events of the form {yi,t+h ≥

a, yj,t+h ≥ b}. Let Pt
{
yi,t+h ≥ a, yj,t+h ≥ b

}
denote the model predicted probability that

the event occurs. The event forecasts are evaluated based on

P(i, j, h) =
1

P − h

P−h∑
s=0

(
I{yi,R+s+h ≥ a, yj,R+s+h ≥ b} (8)

−PR+s

{
yi,R+s+h ≥ a, yj,R+s+h ≥ b

})
.

Here I{yi,R+s+h ≥ a, yj,R+s+h ≥ b} is an indicator function which takes a value of one if the

event {yi,t+h ≥ a, yj,t+h ≥ b} occurs and zero if it does not. The statistic P(i, j, h) measures

the divergence of the actual frequency of events from the model-implied event probabilities.

Some remarks about P(i, j, h) are in order. Define the alternative statistic P̃(i, j, h) by

squaring the difference between the indicator function and the predicted probability in (8)

and by pre-multiplying it by minus one:

P̃(i, j, h) = − 1

P − h

P−h∑
s=0

(
I{yi,R+s+h ≥ a, yj,R+s+h ≥ b}

−PR+s

{
yi,R+s+h ≥ a, yj,R+s+h ≥ b

})2

P̃(i, j, h) is an example of a scoring rule for the prediction of a binary event that could be used

to rank alternative forecasting models. However, our goal is not to rank forecasting models.

We are trying to assess whether predicted probabilities correspond with empirical frequencies.

Dawid (1982) suggests to consider all forecasts for which the predicted probability of the

event of interest is close to ω and to compute the fraction q(ω) of forecasts for which the
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event occurred. If the function q(ω) ≈ ω, the event forecasts are well calibrated. Since

we have relatively few forecasts in our application, we are using a less stringent notion and

simply examine the discrepancy between the average frequency of an event and the average

predicted probability. This discrepancy should be close to zero, if the event forecast is well

calibrated.

3 The DSGE Models

The predictive checks are applied to two New Keynesian DSGE models. First, we consider

a small-scale model that consists of three basic equations: a consumption Euler equation, a

New Keynesian Phillips curve, and a monetary policy rule. The theoretical properties of this

class of models are discussed extensively in Woodford (2003), and numerous versions that

differ with respect to the specification of the exogenous shock processes and the formulation

of the monetary policy rule have been estimated based on output, inflation, and interest rate

data, see Schorfheide (2008) for a survey. Second, we generate forecasts from the SW model.

This model has a richer structure that accounts for capital accumulation, variable capital

utilization, wage rigidity in addition to price rigidity, and households’ habit formation.

3.1 A Small-Scale Model

Empirical specifications of the canonical small-scale New Keynesian DSGE model differ with

respect to the exogenous shock processes as well as the formulation of the monetary policy

rule. Our version is identical to the one studied in the survey paper by An and Schorfheide

(2007) and includes a technology growth, a government spending, and a monetary policy

shock. The interest rate feedback rule implies a reaction to output growth deviations from

steady state rather than to deviations of the level of output from a measure of potential

output.

Log-Linearized Equilibrium Conditions. We briefly summarize the log-linearized equi-

librium conditions associated with the small-scale DSGE model. The underlying decision

problems of households and firms are described in detail in An and Schorfheide (2007). Let
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x̂t = ln(xt/x) denote the percentage deviation of a variable xt from its steady state x. The

equilibrium can be approximated by an intertemporal Euler equation, a New Keynesian

Phillips curve, and an interest rate feedback rule:

ŷt = IEt[ŷt+1] + ĝt − IEt[ĝt+1]−
1

τ

(
R̂t − ÎEt[πt+1]− IEt[ẑt+1]

)
(9)

π̂t = βIEt[π̂t+1] + κ(ŷt − ĝt)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t + (1− ρR)ψ2 (∆ŷt + ẑt) + εR,t.

Here yt denotes output, πt inflation, and Rt nominal interest rates. The parameter β is the

households’ discount factor and τ is the inverse intertemporal elasticity of substitution. The

parameter κ captures the slope of the Phillips curve. The monetary policy rule depends on

the smoothing parameter ρR and the coefficients ψ1 and ψ2, which determine how strongly

the central bank reacts to deviations of inflation and output growth from their target levels.

The model economy is perturbed by three exogenous shocks. εR,t is a monetary policy

shock, and ẑt and ĝt are AR(1) processes that capture total factor productivity growth and

the evolution of government spending (as a fraction of output):

ẑt = ρz ẑt−1 + εz,t, ĝt = ρgĝt−1 + εg,t. (10)

Measurement Equations. The model is completed by a set of measurement equations

that relate the model states to a set of observables. We assume that the time period t

in the model corresponds to one quarter and that the following observations are available

for estimation: QoQ per capita GDP growth rates (YGR), QoQ inflation rates (INF), and

quarterly nominal interest rates (FFR). The three series are measured in percentages, and

their relationship to the model variables is given by the following set of equations:

Y GRt = γ̄ + ŷt − ŷt−1 + ẑt (11)

INFt = π(A)/4 + π̂t

FFRt = (π(A) + r(A))/4 + γ̄ + R̂t.

The parameter γ̄ captures the steady-state growth rate of output, which in this simple model

is identical to the growth rate of the exogenous technology. π(A) is the annualized steady-

state inflation rate, which is equal to the central bank’s target rate. Finally, we use r(A) to

denote the following transformation of the households’ discount factor: β−1 = 1 + r(A)/400.
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Prior Distribution. Bayesian estimation of a DSGE model requires the specification of a

prior distribution. The complete specification of the prior distribution is given in the Online

Appendix. We use the same priors as in An and Schorfheide (2007) with one exception:

The inflation coefficient in the monetary policy rule is fixed at ψ1 = 1.7. It is well known in

the literature that ψ1 is difficult to identify. This lack of identification causes some numer-

ical instabilities in the application of Markov-Chain Monte-Carlo (MCMC) methods. Since

the predictive check requires us to estimate the DSGE model many times and the precise

measurement of ψ1 is not the objective of our analysis, we decided to fix the parameter.

3.2 The Smets-Wouters Model

The SW model is the second model considered in this paper. The SW model is a more elabo-

rate version of the DSGE model presented in Section 3.1. Capital is a factor of intermediate

goods production, and nominal wages, in addition to nominal prices, are rigid. The model

is based on work by Christiano, Eichenbaum, and Evans (2005), who added various forms of

frictions to a basic New Keynesian DSGE model in order to capture the dynamic response

to a monetary policy shock as measured by a structural vector autoregression (VAR). In

turn, Smets and Wouters (2003) augmented the Christiano-Eichenbaum-Evans model by ad-

ditional shocks to be able to capture the joint dynamics of Euro Area output, consumption,

investment, hours, wages, inflation, and interest rates. The 2007 version of the SW model

contains a number of minor modifications of the 2003 model in order to optimize its fit on

U.S. data. We use the 2007 model exactly as presented in SW and refer the reader to that

article for details. The log-linearized equilibrium conditions are reproduced in the Online

Appendix.

Measurement Equations. The SW model is estimated based on seven macroeconomic

time series. The period t corresponds to one quarter and the measurement equations for out-

put growth, inflation, interest rates, consumption growth, investment growth, wage growth,
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and hours worked are given by:

Y GRt = γ̄ + ŷt − ŷt−1 (12)

INFt = π̄ + π̂t

FFRt = r̄ + R̂t

CGRt = γ̄ + ĉt − ĉt−1

IGRt = γ̄ + ît − ît−1

WGRt = γ̄ + ŵt − ŵt−1

HOURSt = l̄ + l̂t.

Since the neutral technology shock in the SW model is assumed to be stationary, the model

variables are not transformed as in the small-scale model to induce stationarity, and the

growth rate of the technology shock does not appear in the measurement equations.

Prior Distributions. Based on information that does not enter the likelihood function,

SW fix the following five parameters in their estimation:

δ = 0.025, gy = 0.18, λw = 1.50, εw = 10.0, εp = 10.

We deviate from SW’s analysis by fixing some additional parameters:

ϕ = 5.00, σc = 1.5, h = 0.7, ξw = 0.7, σl = 2,

ξp = 0.7, ιw = 0.5, ιp = 0.5, rπ = 2, α = 0.3.

These parameter values are close to the posterior mean estimates reported in Smets and

Wouters (2007). Our predictive check requires us to estimate the SW model several hundred

times on recursive samples. Fixing the additional parameters ensures the numerical stability

of our MCMC methods. The marginal prior distributions for the remaining parameters are

identical to those used by SW and are summarized in the Online Appendix.

4 Empirical Results

The empirical analysis is presented in three steps. First, we discuss the data set that is

used to conduct the predictive check (Section 4.1). Second, we evaluate the marginal pre-
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dictive distributions of output growth, inflation, and interest rates (Section 4.2). Third, we

examine the prediction of comovements of the small-scale DSGE model and the SW model

(Section 4.3). Computational details pertaining to the implementation of Algorithm 1 are

provided in the Online Appendix.

4.1 Data Set

For the evaluation of the density forecasts, we are using the real-time data set assembled by

EG and extended by Del Negro and Schorfheide (2012). EG compared the accuracy of point

forecasts from the SW model to those from the Fed’s Greenbook. As part of their analysis

the authors compiled for each Greenbook publication date real time observations for the

time series that were used by Smets and Wouters (2007) to estimate their model. Since

the focus in our paper is not a comparison of the DSGE model and the Greenbook forecast

we use only a subset of the data sets constructed by EG, namely those for the Greenbooks

published in March, June, September, and December. We refer to the March forecast as the

first-quarter forecasts, and the remaining forecasts are associated with Quarters 2 to 4.

The March forecasts are based on fourth-quarter (Q4) releases from the previous year,

meaning that the estimation period for the DSGE model effectively ends in Q4 of the pre-

ceding year. Thus, the first forecast (h = 1) in March is essentially a nowcast for Q1, and the

subsequent forecasts are for Q2, Q3, and so forth. For each forecast origin, we refer to the

“nowcast” as a one-step-ahead forecast and choose a maximum forecast horizon of H = 8.

The first forecast origin in our analysis is March 1997 and the last forecast origin for one-

step-ahead forecasts is June 2008, which provides us with 46 sets of forecasts. For horizons

h > 1, the number of forecasts is reduced by h−1. We decided to exclude observations from

the 2008-09 recession because the forecast errors of time series models in general are unusu-

ally large during this period. Since there is strong empirical evidence that monetary policy

as well as the volatility of macroeconomic shocks changed in the early 1980s, we estimate

both DSGE models based on data sets that start in 1984:Q3.5 The predictive distribution

for the model checks – using the notation of Section 2 – is constructed conditional on Y1:R.

5We are using a conditional likelihood function that conditions on observations from 1983:Q3 to 1984:Q4.
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Period R corresponds to 1996:Q4, which is the last period in the estimation sample that is

used to generate the March 1997 forecasts.

In a real-time data environment, observations of Y1:t−1 published in period t are poten-

tially different from the observations that had been published in period t−1. For this reason,

time series are often indexed by a superscript, say τ ≥ t, which indicates the vintage or data

release date. Using this notation, a Bayesian forecaster at time t has potentially access to

a triangular array of data Y 1
1:1, Y

2
1:2, . . . , Y t

1:t. We decided not to modify the measurement

equation of the DSGE models to capture the data revision process. When computing the

recursive forecasts based on the actual data, we are ignoring the presence of earlier data

vintages and hence the potential information content in data revisions. Thus, we consider

the sequence of predictive distributions p(Yt+1:t+H |Y t
1:t), t = R + 1, . . . , T − 1, instead of

p(Yt+1:t+H |Y 1
1 , Y

2
1:2, . . . , Y

t
1:t). Likewise, when simulating trajectories from the DSGE model

to construct the synthetic samples (Y R
1:R, Y

∗
R+1:t), t = R + 1, . . . , T , we make no attempt

to simulate vintages Y ∗tR+1:t that mimic the revision properties of U.S. data. While we ac-

knowledge that it would be interesting to examine how results would change if the DSGE

model were setup to process the information contained in data revision, we find that such

an extension is beyond the scope of this paper.

The real-time-forecasting literature is divided as to whether forecast errors should be

computed based on the first release following the forecast date, say yt+ht+h or based on the most

recent data vintage, say yT∗t+h. The former might do a better job capturing the forecaster’s

loss, whereas the latter is presumably closer to the underlying “true” value of the time

series. We decided to follow the second approach and evaluate the forecasts based on actual

values from the T∗ = 2010 : Q3 data vintage. All real series are converted into per capita

terms. Finally, as mentioned previously, all h-step forecasts refer to averages over the forecast

horizon. Thus, using the notation of Section 2, we consider forecasts of ȳi,t+1:t+h rather than

yi,t+h.
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4.2 Evaluation of Marginal Density Forecasts

Figure 1 displays the RMSEs of pseudo out-of-sample forecasts of average output growth,

inflation, and interest rates up to eight quarters ahead computed from the small-scale DSGE

model and the SW model. The dashed lines indicate 90% credible bands associated with the

model-implied predictive distribution of the RMSEs. The RMSEs attained with the small-

scale model and the SW model are of similar magnitude as those reported in the previous

literature. The small-scale model does about the same in forecasting GDP: the RMSE is 0.58

compared to 0.57 for the SW model. The SW model, on the other hand, delivers slightly more

precise inflation and interest rate forecasts with RMSEs of 0.22 and 0.11, respectively, versus

0.26 and 0.13 for the small-scale model. For the small DSGE model, the RMSEs fall within

the 90% credible interval generated by the predictive distribution, with the exception of the

interest rate at longer horizons. For the SW model, the actual output RMSEs fall below

the 5th percentile of their predictive distribution at most horizons. Conversely, the Federal

Funds rate RMSEs are well within the bands associated with their predictive distribution.

The bands of the posterior predictive distribution supplement the information provided

by the actual RMSEs in an important dimension. The actual output RMSEs in the SW

model are in general smaller than what one would expect from the estimated model. A

potential explanation for this finding is that some of the exogenous shock processes in the

SW model are highly persistent, in part because they have to capture deviations of output,

consumption, and investment from the model-implied common trend. Highly persistent

shocks in turn imply fairly large forecast error variances, which contribute to the RMSE.

Thus, the inconsistency of the actual RMSEs with those from the predictive check is a

reflection of a model deficiency.

Figure 2 displays the histograms of the unconditional PITs from both models at one-

quarter and four-quarter horizons. To generate the histogram plots, we divide the unit

interval into J = 5 equally sized subintervals and depict the fraction of PITs (measured in

percent) computed from the actual data that fall in each bin. Since, under the predictive

distribution, the PITs are uniformly distributed on the unit interval, we also plot the 20%

line. Finally, the dashed lines indicate the 5th and 95th percentile of the predictive distri-
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bution for the fraction of PITs in each bin.6 The Sχ2 statistics, which were defined in (5)

and measure the squared distance of the bin heights from the 20% line, are summarized in

Table 1. We also report the p-values (in parentheses) from the predictive distribution. In

general, the Sχ2 statistics conform with the graphical information provided in the figures.

At the short horizon, the density forecasts from the small DSGE model appear well

calibrated for output and inflation, with the bars of the PIT histograms approximately

equally sized and within the interval obtained from the predictive distribution. The empirical

distribution of the PITs associated with the one-step-ahead Federal Funds rate forecast is

skewed to the right. The Federal Funds rate was persistently low over the evaluation period, a

feature that the simple model was unable to capture. Looking at four-quarter-ahead averages,

output and inflation density forecasts are still fairly well calibrated, which is confirmed by

the Sχ2 statistics reported in Table 1. The deficiency of the Federal Funds rate density

forecast becomes slightly less pronounced at the longer horizon, but still too many actual

realizations fall into the left tail of the predictive distribution. The Sχ2 statistic lies closer to

center of the predictive distribution, with a p-value of 0.27 versus 0.06 for the one-quarter

horizon.

The PIT histograms for the SW model are similar for inflation and the Federal Funds rate,

but different with respect to output. The one- and four-quarter ahead forecasts for output

of the SW model are poorly calibrated in comparison to the small-scale DSGE model. As

shown in Table 1, the realized values of the Sχ2 statistics associated with marginal forecasts

for output exceed or equal the 90th percentile of the predictive distribution at these two

horizons. The density forecast of output is too diffuse, as the PITs too frequently fall

in the 0.2 to 0.4 (h = 1) and 0.4 to 0.6 (h = 4) intervals, respectively. This feature is

consistent with the RMSE predictive check discussed above. The estimated shock processes

generate a predictive distribution that is too diffuse. If the model is simulated forward, the

counterfactual output growth RMSEs are much larger than the actual RMSEs because the

6For h = 1 the dashed lines should be flat because the one-step-ahead PITs z∗i,1,t are independent under

the DSGE model-implied predictive distribution. In turn, the distribution of 1
P−1

∑T−1
t=R I{a ≤ z∗i,1,t ≤ a+δ}

is invariant to shifts in a. Variations in the percentile bands in Figure 2 reflect simulation noise. For h > 1

the bands are no longer flat under the predictive distribution because the z∗i,h,t’s are no longer independent.
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simulated trajectories exhibit an unrealistically large output volatility.

Diebold, Gunther, and Tay (1998) emphasized that for a correctly specified one-step-

ahead density forecast the PITs are independent across time. Deviations from independence

are indicative of a dynamic misspecification in the sequence of predictive distributions. Fig-

ure 3 displays autocorrelation functions for PITs based on one-step-ahead density forecasts,

Zi,1,R:T−1 in the notation of Section 2.1, of output, inflation, and interest rates as well as

the corresponding 90% bands. For both DSGE models, the PITs of output and inflation are

only mildly correlated and lie within the 90% intervals. The correlation is somewhat more

pronounced for the small-scale model, which is consistent with the SW model containing

many more shocks and frictions that were designed to capture the dynamics of U.S. data.

For interest rates, on the other hand, a very different picture emerges. The PITs exhibit

a strong first- and second-order serial correlation, complementing our previous finding that

both models seem to systematically overpredict the Federal Funds rate.

To summarize, our predictive checks for the (marginal) density forecasts provide a more

detailed picture of the DSGE models’ forecast performance than a RMSE comparison. Con-

sider, for instance, the four quarter-ahead forecast for output. The SW model attains an

RMSE of 0.32 while the small-scale model generates a slightly larger RMSE of 0.36. At

the same time, however, the density forecasts from the small model appear to be better

calibrated than those from the SW model as the empirical distribution of the PITs is closer

to a uniform distribution. The probabilities derived from the density forecasts of the small

model are closer to the observed frequencies. The SW model predicts output volatility to

be higher than it actually is. While the forecast performance of the two DSGE models is

markedly different, no clear ranking emerges. Both models have deficiencies along different

dimensions. The posterior predictive checks highlight deficiencies that are not apparent from

RMSE comparisons.

4.3 Evaluating Predictions of Comovements

To assess the DSGE models’ ability to predict comovements among macroeconomic aggre-

gates, we now consider statistics computed from bivariate predictive distributions. Since a
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joint density of two random variables can be factorized into a marginal and a conditional den-

sity and since we have examined marginal densities in the previous subsection, we shall now

focus on predictive densities that are conditioned on future realizations of output growth,

inflation, or interest rates.

The starting point of the analysis is the relative precision of conditional and unconditional

point forecasts. The unconditional point forecasts are the same that were used in Section 4.2

to compute the RMSEs displayed in Figure 1. To obtain forecasts conditional on future

realizations, say of output growth, we compute the mean of the conditional predictive density.

In a nutshell, if a joint predictive distribution is approximately normal and implies that two

variables are highly correlated, then knowing the future realization of one of them should

substantially reduce the RMSE when predicting the other.7 If the correlation structure in the

predictive distribution is consistent with the observed comovements of the two variables, the

predicted RMSE reduction should be commensurable with the actual reduction. An RMSE

ratio of one is in some sense a lower bound for model behavior in the context of prediction.

That is, any model can achieve an RMSE ratio of one by simply having the marginal and

conditional predictive distributions coincide. In light of this, an RMSE ratio above one is

particularly troubling.

Figure 4 displays the RMSE ratios of conditional and unconditional forecasts, R(i|j, h)

in (6). For the small DSGE model, the RMSE ratios are at or above one for nearly all

conditional forecasts. The only exception is the Federal Funds rate forecast conditional on

output and vice versa, which indicates small gains in precision through conditioning. For the

forecasts of inflation given output and inflation given interest rates the poor performance of

the conditional forecast is inconsistent with the RMSE ratios implied by the predictive distri-

bution. According to the predictive distribution of the small-scale model, the comovements

between output and inflation should lead to potentially sizeable RMSE reductions through

conditioning. The observed increase in the RMSE ratio associated with inflation conditional

on output suggests that the correlation structure implied by the small-scale DSGE model

does not appropriately capture the comovements of output and inflation.

7Consider two standard normal random variables, X1 and X2, with correlation ρ. While the unconditional

standard deviation of X1 is 1, the standard deviation of X1 conditional on X2 is
√

1− ρ2.
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The RMSE ratios for the SW model exhibit different behavior. There is hardly any

gain using the conditional relationship between output and inflation and output and interest

rates for forecasting. Moreover, this is, for the most part, consistent with the predictive

distribution for the RMSE ratios. On the other hand, the predictive distribution indicates

that there should be sizable gains from conditioning on interest rates to forecast inflation

and vice versa. Unfortunately, the actual RMSE ratios for inflation conditional on interest

rates (and vice versa) are greater than one at all horizons. The comovements of inflation

and the interest rate implied by the SW model are at odds with the data.

It is worth discussing the causes of the differences in the predictive distributions reflected

in the RMSE ratio bands. We tried to get insight into the issue by looking at estimation

output and the predictive density from a “typical” subsample (using real data) in our esti-

mation period. We picked the estimation sample ending in 2001:Q2, about halfway through

the forecast evaluation period, although the results are broadly similar everywhere in the

sample. For the small DSGE model, the predictive density indicates that there is a strong

negative relationship between output and inflation. The correlation between four-step-ahead

inflation and output embedded in the predictive density is −0.50. This is consistent with

the expected reduction in RMSE indicated by the credible bands in Figure 4.

The negative relationship between output and inflation is driven by total factor produc-

tivity (technology), which acts as a supply shock in the model. An inspection of impulse

response functions (not shown), indicates that an increase in technology reduces firms’ costs,

inducing them to produce more and lower prices. The other two shocks in the model generate

a positive comovement between output and inflation. It is, however, the technology shock

that dominates. An examination of the model-implied long-run relationship between output

and inflation, calculated at the posterior mean, indicates that the correlation is −0.64 when

all three shocks are included and just 0.07 when only the government spending and monetary

policy shock are included.

There is no strong relationship between output and inflation in the density forecast of

the SW model, despite the presence of a similar TFP shock in the model specification.

The correlation between four-step-ahead output and inflation in the predictive density is
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only -0.04. Indeed, the impulse response functions for TFP look qualitatively similar to the

ones generated by the small DSGE model, although the response of inflation is much more

muted. Due to the rich structure and specification of the SW model, the technology shock

contributes relatively little to the relationship between output and inflation. For instance,

the presence of the investment-specific technology shock reduces the importance of the TFP

shock. This shock generates a positive comovement between output and inflation, which

cancels the effect of the TFP shock. Moreover, the preference and government spending

shocks operate in the same fashion. It is true that the markup shocks – the other “new”

shocks – generate negative comovement between output and inflation, but an inspection of

the impulse responses suggests that the effect on output is dwarfed by the demand shocks

listed above. On balance, the forces wash one another out, leaving comovements between

output and inflation undetectable in the predictive density.

For inflation and interest rates, the findings are reversed. Here there is very little evidence

of comovements in the small DSGE model while the SW model indicates that inflation should

be very informative about the interest rate and vice versa. In the predictive densities, the

correlation between four-step-ahead inflation and the interest rate is just −0.05 for the small

DSGE model and 0.52 for the SW model. The comovement in the SW model is driven

principally by the presence of price and wage markup shocks. Markup shocks directly cause

wage and prince inflation to increase and the interest rate rises in reaction to this inflation,

generating positive comovement. Moreover, both inflation and the interest rate are much

more persistent in the SW model than in the small DSGE model. Interestingly, these same

shocks generate a negative comovement between output and interest rates, an effect seen in

the small DSGE model, that is counteracted by the demand shocks. In sum, the predictive

densities of two models can be quite different, even if one model is “built upon” the other.

We proceed by examining the calibration of predictive distributions that are conditioned

on the average realization of either output or interest rates. Figure 5 displays PITs based

on density forecasts conditional on future output. For the small DSGE model, the PIT

histograms based on conditional density forecasts look similar to their unconditional coun-

terparts in Figure 2. For the SW model, the PITs indicate that the density forecasts of the
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Federal Funds rate are better calibrated if they are conditioned on output, in particular for

h = 4. This is reflected in the difference between the Sχ2 statistics for the conditional and

unconditional forecasts reported in Table 1. For h = 1 the conditioning raises the p-value

of Sχ2 from 0.01 to 0.08. For h = 4 the p-value increases from 0.10 to 0.40. Moreover, it is

clear by examining the differences for the Federal Funds rate PITs in Figures 2 and 5 that

the large number of interest rate observations falling into the center of the predictive density

decreases when conditioning on output.

The comovement of output growth and inflation with the Federal Funds rate is of par-

ticular importance to central banks, which often compare macroeconomic forecasts based on

various hypothetical paths for short-term nominal interest rates. Thus, Figure 6 depicts PIT

histograms for output and inflation obtained from forecasts that condition on average future

interest rates. It is important to note that these histograms do not convey any information

about the DSGE models’ ability to generate accurate counterfactual policy predictions. We

only examine whether the DSGE model is able to capture the comovement between interest

rates and other macroeconomic variables under the actual policy.

For the small DSGE model, the histograms for PITs of one-step-ahean inflation and

output forecasts conditional on interest rates look very similar to their unconditional coun-

terparts. For h = 4 conditioning leads to slightly too many output observations in the tails

of the predictive distribution. The corresponding p-values drop from 0.64 to 0.33. For the

SW model, at the short horizon the conditional distribution looks fairly similar to the uncon-

ditional distribution. For output, this is unsurprising in light of the above discussion about

the lack of comovements between output and interest rates in the SW model. Moreover, this

is consistent with the observation that the RMSE ratios for one-quarter ahead forecasts are

basically unity for output. For inflation, the PITs look about the same as the unconditional

PITs, although their overrepresentation in the right tail looks more pronounced. This is

consistent with the RMSE ratio being slightly above one. At the longer horizon, the calibra-

tion of the conditional density forecast of output appears slightly improved relative to the

unconditional density forecast. The p-value increases from 0.10 to 0.32. On the other hand,

the calibration of the forecast density for inflation has deteriorated subtantially relative the
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unconditional density. There are too many realizations in the right tail of the predictive

density. The deficiency gets even more pronounced at an eight-quarter-ahead forecasting

horizon. Overall, this is in line with the poor RMSE of the inflation forecast conditional on

interest rates. This indicates that the strong positive relationship between future interest

rates and inflation embedded in the predictive density in the SW model does not properly

reflect the joint dynamics of the time series.

We now consider a simple event study as a final dimension along which to evaluate the

predictive densities. We partition the sample space for average output and inflation in four

events: output growth and inflation are both above (below) their respective long-run targets,

output growth is above and inflation is below target, and output is below and inflation is

above target. These events summarize the models’ ability to correctly forecast the directional

movements of output and inflation, which are important in policy settings. If both output

and inflation are above (below) their steady-state values, the policymaker has an incentive

to raise (lower) interest rates. We assess how big the divergence is between the realized

frequency of these events and the average probabilities of events implied by the model in

Figure 7 for up to eight quarters ahead, see P(i, j, h) in (8). The small scale model performs

substantially worse for two of the events. The model overpredicts the event in which output

and inflation are both below target and underpredicts the event in which output is above

and inflation is below target. Here is another example of a deficiency in comovements which

would not be reflected in marginal distributions. These mispredictions roughly cancel out in

the marginal for inflation. On the other hand, the SW model appears well-calibrated for all

events.

The SW model also generates a predictive distribution for consumption, investment,

hours, and wages, in addition to the three variables we have considered. Now we augment

our earlier results with a selection of results on the predictive distribution for consumption,

investment, and hours. Figure 8 displays the PITs based on density forecasts of consumption,

investment, and hours given future interest rates. We see that for one-quarter ahead forecasts

for investment and hours, the predictive distributions appear to be well calibrated. For

consumption, however, PITs are falling too frequently in one tail of the distribution. That is,



27

relative the actual realizations of consumption, the model is underpredicting consumption.

At the four-quarter range, these deficiencies become more pronounced. This problem is

in part caused by the counterfactual common trend restriction that the SW imposes on

consumption, investment, and output. In the data the growth rates of these series are slightly

different.8 Conditioning on the Federal Funds rate leads to a substantial RMSE reduction

of the hours worked forecast – which is inconsistent with the predictive distribution – but

has essentially no positive effect on the consumption and investment forecasts.

5 Conclusion

This paper develops and applies tools to assess multivariate aspects of Bayesian DSGE

model density forecasts and their ability to predict comovements among key macroeconomic

variables. The forecast evaluation is implemented through posterior predictive checks that,

broadly speaking, assess whether predicted probabilities are in line with observed frequencies

in a recursive forecasting setting. For actual data and DSGE model-generated data we

compare compare probability integral transformations based on marginal and conditional

density forecasts as well as RMSEs associated with unconditional and conditional point

forecasts. The predictive checks are applied to a simple three-equation New Keynesian

model as well as the more elaborate SW model. It turns out that the predictive densities

of the two DSGE models are quite different in various dimensions, yet no clear ranking

emerges. The additional features incorporated into the SW model do not lead to a uniform

improvement in the quality of the density forecasts and in the prediction of comovements.

Moving forward, we hope that these predictive checks can be used as a diagnostic tool to

assess DSGE model performance in a policy-relevant way and to spur new thinking about

the specification of DSGE models, particularly with regard to modeling the relationship

8In order to corroborate the hypothesis that some of the deficiencies of the forecasts from the SW model

are caused by misspecified common trend restrictions, we constructed recursive forecasts based on a modified

data set in which we removed trends from log GDP, investment, consumption, and real wages. The detrending

removes distortionary effects of misspecified common deterministic trends, thus improving the quality of the

density forecasts. More detailed results are reported in the Online Appendix.
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between key macroeconomic variables. The econometric tools developed in this paper can

of course also be applied to other classes of multivariate time series models, such as vector

autoregressions or dynamic factor models.
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Table 1: Sχ2(·) Statistics for PITs

Model Output Gr. Inflation Interest

1 Quarter Ahead

Uncond. Small-Scale 5.30 ( 0.26 ) 4.22 ( 0.35 ) 9.43 ( 0.06 )

Smets-Wouters 12.22 ( 0.01 ) 3.78 ( 0.40 ) 13.11 ( 0.01 )

Cond on Y Small-Scale 4.65 ( 0.30 ) 7.26 ( 0.12 )

Smets-Wouters 5.56 ( 0.21 ) 8.44 ( 0.08 )

Cond on π Small-Scale 6.39 ( 0.15 ) 10.09 ( 0.04 )

Smets-Wouters 8.89 ( 0.06 ) 6.22 ( 0.17 )

Cond on R Small-Scale 4.65 ( 0.30 ) 5.09 ( 0.26 )

Smets-Wouters 11.56 ( 0.01 ) 8.44 ( 0.08 )

4 Quarters Ahead

Uncond. Small-Scale 4.33 ( 0.64 ) 4.09 ( 0.63 ) 8.28 ( 0.27 )

Smets-Wouters 14.90 ( 0.10 ) 3.48 (0.71 ) 14.90 ( 0.10 )

Cond on Y Small-Scale 3.86 ( 0.65 ) 12.23 ( 0.12 )

Smets-Wouters 4.19 ( 0.65 ) 6.81 ( 0.40 )

Cond on π Small-Scale 8.98 ( 0.27 ) 10.60 ( 0.16 )

Smets-Wouters 9.43 ( 0.28 ) 18.95 ( 0.04 )

Cond on R Small-Scale 7.35 ( 0.33 ) 3.40 ( 0.73 )

Smets-Wouters 8.71 ( 0.32 ) 26.10 ( 0.01 )

Notes: The values in parentheses correspond to the p-values associated with Sχ2 statistic. P-values for

the one-quarter-ahead forecasts come from the exact small-sample distribution of the Sχ2 statistic, while

the four-quarter-ahead p-values are computed using the predictive distribution simulated from the DSGE

models. A boldface entry indicates a p-value of 0.10 or less.
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Figure 1: RMSEs of Unconditional Forecasts

Small DSGE Model

Smets-Wouters Model

Notes: Root-mean-squared Errors (RMSEs) for forecasts of output growth (GDP), inflation

(INF), and interest rates (FFR). The solid line corresponds to RMSEs associated with actual

forecasts, and the dashed line signifies 90% credible intervals obtained from the predictive

distribution.
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Figure 2: PIT Histograms – Unconditional Forecasts

Small DSGE Model

Smets-Wouters Model

Notes: Probability integral transforms for forecasts of output growth (GDP), inflation (INF),

and interest rates (FFR). Bars correspond to actuals, and dashed bands indicate 90% credible

intervals obtained from the predictive distribution.
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Figure 3: PIT Autocorrelations of One-Step Forecasts

Small-Scale DSGE Model

Smets-Wouters Model

Notes: Autocorrelation functions (ACFs) of PITs for forecasts of output growth (GDP),

inflation (INF), and interest rates (FFR) of order 1 to 4 (x-axis). The solid line corresponds

to ACFs associated with actual forecasts, and the dashed line signifies 90% credible intervals

obtained from the predictive distribution.
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Figure 4: RMSE Ratios of Conditional and Unconditional Forecasts

Small-Scale Model

Smets-Wouters Model

Notes: RMSE ratios for forecasts of output growth (GDP), inflation (INF), and interest

rates (FFR): conditional on future realizations of other variables versus unconditional. The

solid line corresponds to RMSE ratios associated with actual forecasts, and the dashed line

signifies 90% credible intervals obtained from the predictive distribution.
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Figure 5: PITs Histograms – Forecasts Given Future Output

Small-Scale Model

Smets-Wouters Model

Notes: Probability integral transforms for forecasts of inflation (INF) and interest rates

(FFR) conditional on actual future output growth. Bars correspond to actuals, and dashed

bands indicate 90% credible intervals obtained from the predictive distribution.
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Figure 6: PIT Histograms – Forecasts Given Future Interest Rates

Small-Scale Model

Smets-Wouters Model

Notes: Probability integral transforms for forecasts of output growth (GDP) and inflation

(INF) conditional on actual future interest rates. Bars correspond to actuals, and dashed

bands indicate 90% credible intervals obtained from the predictive distribution.
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Figure 7: Event Occurrence minus Event Probabilities

Small-Scale Model

Smets-Wouters Model

Notes: The solid line corresponds to differences associated with actual forecasts, and the

dashed line signifies 90% credible intervals obtained from the predictive distribution.
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Figure 8: Smets-Wouters Model: Consumption, Investment, Hours

PITs Histograms – Forecasts Given Future Interest Rates

RMSE Ratios of Conditional and Unconditional Forecasts

Notes: Top Panels: Probability integral transforms for forecasts of consumption growth

(CONS), investment growth (INV), and hours worked (HOURS) conditional on actual future

interest rates. Bars correspond to actuals, and dashed bands indicate 90% credible intervals

obtained from the predictive distribution. Bottom panels: The solid line corresponds to

RMSE ratios associated with actual forecasts, and the dashed line signifies 90% credible

intervals obtained from the predictive distribution.


